Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.066$
$S=0.991$
3461 reflections
325 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0306 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.167 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.183 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=-0.09(9)$

Table 1. Selected bond lengths (\AA) for (I)

$\mathrm{Cl}-\mathrm{O} 21$	$1.196(3)$	$\mathrm{C} 4-\mathrm{N} 5$	$1.449(3)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.380(3)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.521(3)$
$\mathrm{Cl}-\mathrm{C} 4$	$1.538(4)$	$\mathrm{N} 5-\mathrm{C} 6$	$1.466(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.497(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.521(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.589(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.514(3)$

Compound (II)

Crystal data
$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$
Mo $K \alpha$ radiation
$M_{r}=504.54$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=6.237$ (1) \AA
$b=18.928$ (2) \AA
$c=21.321$ (3) \AA
$V=2517.0$ (6) \AA^{3}
$Z=4$
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Siemens $P 4$ diffractometer $\omega / 2 \theta$ scans
$\theta_{\text {max }}=23.00^{\circ}$
$h=0 \rightarrow 6$
Absorption correction: none
3978 measured reflections
3492 independent reflections
2256 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.025$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.083$
$S=1.089$
3492 reflections
325 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0321 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$k=0 \rightarrow 20$
$l=-23 \rightarrow 23$
3 standard reflections every 97 reflections intensity decay: <4\%
$\Delta \rho_{\text {max }}=0.176 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.161 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for
Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.09(14)$
$(\Delta / \sigma)_{\max }=0.007$
$\lambda=0.71073 \AA$
Cell parameters from 27 reflections
$\theta=2.35-7.51^{\circ}$
$\mu=0.173 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.52 \times 0.22 \times 0.10 \mathrm{~mm}$
Colourless

Because of the bad shape of the crystals, the data collections were limited in 2θ. However, the reduced thermal motion allowed the determination of both structures with sufficient accuracy.

For both compounds, data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SIR92 (Altomare et al., 1994); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL93 and PARSTCIF (Nardelli, 1991). Molecular parameters were calculated using PARST (Nardelli, 1983, 1995).

The author gratefully thanks Drs Tullio Pilati and Concetta La Rosa for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1356). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo. C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Crist. 27, 435. Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Flack, H. D. (1983). Acta Cryst. A39. 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
La Rosa, C. \& Dalla Croce. P. (1998). In preparation.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1991). PARSTCIF. Program for Creating a CIF from the Output of PARST. University of Parma, Italy.
Nardelli, M. (1995). J. Appl. Cryst. 28. 659.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen. Germany.

Acta Cryst. (1998). C54, 1322-1324

8-Ammonioquinolinium Dichloride

Yaw Kai Yan, Ngoh Khang Goh and Lian Ee Khoo
Division of Chemistry, National Institute of Education, Nanyang Technological Universits, 469 Bukit Timah Road, Singapore 259756, Republic of Singapore. E-mail: yanyk@nievax.nie.ac.sg
(Received 7 October 1997: accepted 10 March 1998)

Abstract

The crystals of $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} .2 \mathrm{Cl}^{-}$contain 8-ammonioquinolinium cations, which are stacked along the c axis, and chloride anions, which occupy the channels between the stacks. There is extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding between the cations and anions, as well as weak anion-cation $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{C}_{s p}$: interactions.
1.447 (5)
1.513 (5)

$\mathrm{Cl}-\mathrm{O} 21$	$1.185(5)$	$\mathrm{C} 4-\mathrm{N} 5$	$1.447(5)$
$\mathrm{Cl}-\mathrm{N} 2$	$1.422(5)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.538(5)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.535(6)$	$\mathrm{N} 5-\mathrm{C} 6$	$1.472(5)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.516(5)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.511(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.571(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.513(5)$

ISSN 0108-2701 © 1998

The crystal structure of the title compound, (I), was determined in a study of hydrogen bonding involving the diprotonated 8 -aminoquinoline moiety. It also provides a comparison with the crystal structure of the monoprotonated analogue 8 -aminoquinolinium chloride (Bengtson et al., 1996).

The cation consists of an 8 -aminoquinoline moiety that is protonated at both the amino and the ring N atoms (Fig. 1). Protonation of the amino group results in a lengthening of the $\mathrm{C}-\mathrm{N}_{s p^{3}}$ bond from 1.367 (6) [in 8 -aminoquinolinium chloride (Bengtson et al., 1996)] to 1.454 (2) \AA. This reflects the loss of the conjugation between the aromatic ring and the lone pair of electrons on the amino N atom when the latter is protonated. The quinoline core ($\mathrm{C}_{9} \mathrm{~N}$) is virtually planar, the maximum deviation from the least-squares plane being 0.014 (1) \AA (C8). The ammonio N atom is almost coplanar with the quinoline plane, deviating from it by only 0.068 (2) \AA.

Fig. 1. The crystal structure of the title compound, showing 50% probability ellipsoids for the non- H atoms; H atoms are represented by spheres of arbitrary size.

The 8 -ammonioquinolinium cations are stacked along the c axis, as shown in Fig. 2. The chloride anions occupy the channels between the stacks, and are engaged in extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding with the cations, as indicated by the short $\mathrm{H} \cdots \mathrm{Cl}$ distances $[2.16(2)-2.26(2) \AA]$. Weak anion-cation $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{C}_{s p^{2}}$ interactions are also observed, with the $\mathrm{Cl} \cdots \mathrm{H}$ distances ranging from 2.78 (2) to 2.90 (2) \AA. This unusual $\mathrm{C}_{s p^{2}}-$
$\mathrm{H} \cdots \mathrm{Cl}$ interaction in the solid state was also observed in 4,6-dimethylpyrimidine-2-thione hydrochloride monohydrate (Seth et al., 1996). Overall, each chloride is engaged in four intermolecular $\mathrm{Cl} \cdots \mathrm{H}$ interactions with approximate tetrahedral geometry, as shown in Fig. 2. Thus, although there is no direct hydrogen-bonding interaction among the cations, adjacent cation stacks are interconnected through their hydrogen bonding to the chloride anions.

Fig. 2. Packing diagram viewed down the b axis. The dashed lines represent hydrogen-bonding interactions.

Experimental

Concentrated hydrochloric acid (2.5 ml) was added to a 10 ml conical flask containing 8 -aminoquinoline ($1 \mathrm{mmol}, 0.144 \mathrm{~g}$). The mixture was stirred and heated in a hot-water bath. When all the 8 -aminoquinoline had dissolved, the solution was allowed to cool in a desiccator. Two days later, pale yellow-white crystals ($0.14 \mathrm{~g}, 65 \%$; m.p. $476-479 \mathrm{~K}$) were obtained by gravitational filtration in the desiccator. Elemental analysis of the compound (observed: C 49.2, H 4.1, N 13.3\%) confirms an empirical formula of $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}$, indicating the formation of a dihydrochloride salt of 8 -aminoquinoline. The IR (KBr) spectrum of the compound reveals $\mathrm{N}-\mathrm{H}$ absorptions at 2747 and $2548 \mathrm{~cm}^{-1}$, while its ${ }^{1} \mathrm{H}$ NMR spectrum (DMSOd_{6} as solvent, TMS as internal standard) registers a downfield shift for the protons ($\delta=9.46$ p.p.m.) attached to the ring and the ammonio N atoms compared with 8 -aminoquinolinium chloride ($\delta=6.2$ p.p.m.) (Bengtson et al. 1996) and 8 -aminoquinoline ($\delta=5.0$ p.p.m.) (Kook et al., 1984). The crystals are very sensitive to moisture, converting to deep-orange 8 -aminoquinolinium chloride (Bengtson et al., 1996) within minutes of exposure to air. They were therefore sealed in glass tubes and stored in a desiccator. The crystal used for data collection was sealed in a glass capillary together with a drop of silicone oil.

Crystal data
$\begin{array}{ll}\mathrm{C}_{9} \mathrm{H}_{1} \mathrm{~N}_{2}^{2+} .2 \mathrm{Cl}^{-} & \text {Mo } K \alpha \text { radiation } \\ M_{r}=217.09 & \lambda=0.71073 \AA\end{array}$

Triclinic
$P \overline{1}$
$a=8.0599(10) \AA$
$b=8.4190(10) \AA$
$c=8.4446(8) \AA$
$\alpha=78.078(9)^{\circ}$
$\beta=78.886(11)^{\circ}$
$\gamma=61.473(7)^{\circ}$
$V=489.63(10) \AA^{3}$
$Z=2$
$D_{x}=1.472 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$2 \theta / \omega$ scans
Absorption correction: none
4432 measured reflections
2240 independent reflections 1896 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.022$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.084$
$S=1.051$
2239 reflections
158 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0478 P)^{2}\right.$
$+0.0644 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Cell parameters from 47 reflections
$\theta=4.96-13.60^{\circ}$
$\mu=0.615 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism
$0.67 \times 0.30 \times 0.25 \mathrm{~mm}$
Pale yellow-white
$\theta_{\text {max }}=27.50^{\circ}$
$h=-9 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-10 \rightarrow 10$
3 standard reflections every 97 reflections intensity decay: 6%
$(\Delta / \sigma)_{\text {max }}=0.009$ 。
$\Delta \rho_{\text {max }}=0.293 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.220 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 2$	$1.325(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.358(2)$
$\mathrm{N}-\mathrm{C} 9$	$1.374(2)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.415(2)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.454(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.409(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.386(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.367(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.36(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.12(2)$
$\mathrm{C} 4-\mathrm{C} 10$	$1.415(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.413(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 9$	$122.63(13)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$120.16(13)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$12.108(14)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2$	$120.09(12)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.15(14)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$122.32(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$120.67(14)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$118.11(13)$
$\mathrm{C} 6-\mathrm{C}-\mathrm{C} 10$	$12.31(1)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.57(12)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.56(14)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$118.35(13)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.74(14)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$119.07(13)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$119.74(13)$	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$122.58(14)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H. . A	D..A	D-H... A
$\mathrm{Nl}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cll}$	0.88 (2)	2.16 (2)	3.002 (1)	158 (2)
$\mathrm{N}{ }^{\text {i }}$ - $\mathrm{H} 22^{\mathrm{i}} \ldots \mathrm{Cl} 1$	0.85 (2)	2.26 (2)	3.073 (1)	159 (2)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{H} 2 \mathrm{~A}^{\text {ii }} \ldots \mathrm{Cll}$	0.89 (2)	2.89 (2)	3.486 (2)	126 (1)
$\mathrm{C} 4^{\text {iii }}-\mathrm{H} 4 A^{\text {iii }} \ldots \mathrm{Cll}$	0.98 (2)	2.78 (2)	3.508 (2)	131 (2)
$\mathrm{N} 2-\mathrm{H} 21 \ldots \mathrm{Cl} 2$	0.91 (2)	2.17 (2)	3.057 (2)	163 (2)
$\mathrm{N} 2^{\mathrm{iv}}-\mathrm{H} 233^{\mathrm{iv}} \cdots \mathrm{Cl} 2$	0.86 (2)	2.23 (2)	3.090 (1)	174 (2)
$\mathrm{C} 5{ }^{2}-\mathrm{H} 5 \mathrm{~A}^{2} \ldots \mathrm{Cl} 2$	0.95 (2)	2.88 (2)	3.640 (2)	138 (2)
$\mathrm{C} 6^{\text {vi }}-\mathrm{H} 6 A^{\text {vi }} \ldots \mathrm{Cl} 2$	0.92 (2)	2.90 (2)	3.628 (2)	138 (2)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x,-y, 1-z ;$ (iii) $x-1,1+y, z$; (iv) $1-x, 1-y, 2-z$; (v) $2-x,-y, 2-z ;$ (vi) $x-1, y, z$.

The approximate positions of the chloride anions and the six atoms of the 'pyridyl' ring were obtained by the heavyatom method, while successive Fourier syntheses yielded the positions of the remaining non -H atoms. The structure was refined by the full-matrix least-squares method to anisotropic convergence, after which the positions of the H atoms were found in a difference map calculated using low-angle data $\left(\theta \leq 20^{\circ}\right)$. The H atoms were refined isotropically without any constraints. All computations were carried out on a Pentium PC using the Siemens SHELXTL/PC package (Sheldrick, 1994).

Data collection: P4 (Siemens, 1995). Cell refinement: P4. Data reduction: $P 4$.

Financial support of this work by the National Institute of Education, Nanyang Technological University, Singapore, is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1080). Services for accessing these data are described at the back of the journal.

References

Bengtson, A., Goh, N. K., Hazell, A., Khoo, L. E., Ouyang, J. \& Pedersen, K. R. (1996). Acta Chem. Scand. 50. 1020-1024.
Kook, A. M., Smith, S. L. \& Brown, E. V. (1984). Org. Magn. Reson. 22, 730-733.
Seth, S., Kumar Das, A. \& Mak, T. C. W. (1996). Acta Cṛ̛st. C52, 910-911.
Sheldrick, G. M. (1994). SHELXTLPC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). P4. Data Collection Softuare for the P4 Sustem. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.

Acta Cryst. (1998). C54, 1324-1327

1-Difluoroboronyloxy-3-(N -methylimino)-1-phenyl-1-butene and its Two Photoproducts
Kuniaki Itoh, Miki Fuimoto and Masao Hashimoto
Department of Chemistry, Faculty of Science, Kobe
University, Nada-ku, Kobe 657, Japan. E-mail:
kuitoh@gradis.scitec.kobe-u.ac.jp

(Received 11 September 1996; accepted 18 March 1997)

Abstract

The title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BF}_{2} \mathrm{NO}$, was found to be converted by irradiation to the anti and syn head-to-tail dimers $\{1,3$-bis(difluoroboronyloxy)-2,4-bis[1-(N-methylimino) ethyl]-1,3-diphenylcyclobutane, $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{2}$ $\left.\mathrm{O}_{2}\right\}$. The enaminoketone group of each complex takes a ring structure chelated through the BF_{2} group.

